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The equations for a thin viscous shock layer near elongated hyperboloids of revolution 
oriented at zero angle of attack in a nonuniform gas flow are solved numerically in a wide 
range of values of the determining parameters of the problem. Two important particular 
cases of such flows are studied: flow of the far-wake type and flow from a supersonic spheri 
cal source. The effect of the type and degree of nonuniformity, the Reynold's number, 
the shape of the body and the temperature of its surface on the structure of the flow in 
the viscous layer, the coefficient of friction, and heat transfer factor at the surface 
are analyzed. It is shown that the effect of the nonuniformity on the parameters of the 
f~ow is determined primarily by the shape of the body and the magnitude and direction of 
the gradient of the total pressure in the incident gas flow, and this effect is of a quali- 
tatively different character near the blunt end of the body and on the side surface for 
higher values of the longitudinal coordinate. Busemann's formula for the pressure distri- 
bution over the body is generalized based on the asymptotic solution of the equations of 
a thin nonviscous shock layer and a criterion for nondetached nonuniform gas flow around 
bodies at high Reynolds numbers Re is proposed, it agrees well with the results of numerical 
calculations. 

Flow from a source past a sphere was previously modeled in [1-4], and supersonic flow 
of the far-wake type around a body was studied in [i, 5-7]. The effect of nonuniformity 
on the basic characteristics of the flow in the vicinity of the critical point of double 
curvature was studied in [8]. In [2, 6] the separation of the flow into a nonviscous shock 
layer and a boundary layer is taken into account, in [i, 3-5] the complete Navier-Stokes 
equations are solved, and [7, 8] are based on the model of a thin viscous shock layer. 

i. Formulation of the Problem. We shall study s~personic nonuniform gas flow around 
axisymmetric blunt bodies on the basis of the model of a thin viscous shock layer (TVSL). 
We shall choose a curvilinear coordinate system as follows: the coordinate x is measured 
along the surface of the body and the coordinate z is measured along the normal to the body. 
In this coordinate system the TVSL equations have a dimensionless form [8]: 

a a Op = 0.5 (t  + e) p• ~, 0-7 (pur) + ~ -  (pvr) = O, 

pDu  14- ~ ax az ~ K Oz ) '  p = p Y ,  , ~ = T  ~, 

p D T =  l +. e -~z -[- ~ az ] + "~- T f - ' F F  ' e =  ? + 1 '  

a 0 p, Cp Cp p,'W,R 
D =-- u T-fx + v-a7 a ,  s = - - - f - ,  7 = - -  Re 

CV ~ ~0 

f = ~ R e ,  To = ('~ - -  i )  T .M2. ,  ~o = ~t ( to ) ,  

where V,u and eV, v are the physical components of the velocity vector in the directions 

x and z, respectively; s-lp, p, e-~,Top/T,, ToT, and ~0~ are the density, pressure, temperature, 

an'@ coefficient of viscosity; rR is the distance along the axis of symmetry up to the sur- 
face of the body; and,• -I is the longitudinal curvature of the contour of the body. All 
linear dimensions are scaled to R - the radius of curvature of the body at the critical 
point, and the normal coordinate is scaled to ER. 

The system of equations (i.i) is solved with the following boundary conditions: 
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z = 0 :  u = v = O ,  T =  T~(x); 

z = z~: 9 v - -  u - ~ - ]  = 9o~v~, p = 0.5 (i + ~) 9o~v~, 

K az ' oK  Oz 

(1.2) 

(1.3) 

Here and below the indices =, w, and s refer to the values of the variables in the incident 
flow, on the surface of the body, and on the shock wave; and quantities marked with an 
asterisk are dimensional values of the parameter along the axis of symmetry in front of 
the shock wave. Analysis of the Navier-Stokes equations [9] shows that the system (i.i)- 
(1.3) describes asymptotically correctly the flow in a viscous shock layer with e<<1, Re>> 

i ,  K = eRo ~ O( l ) .  

We shall study below two cases of flow. 

i) Flow of the far-wake type around a body. ' Assuming that the axis of the body is 
also the axis of symmetry of the wake, the expressions for the components of the velocity 
vector of the gas and the density of the gas in the incident flow have the following form 

[1, 6]: 

2 --I uoo=Vacoscr  v o o = - - V i s i n c c  , 9 o o = [ l + c ( l - - V 1 ) ]  , 

V 1 ---- (t -- a) - l ( l  -- a exp ( - -brZ) ) ,  a << 1, 
(i.4) 

where ~ is the angle of inclination of the contour of the body with respect to the symmetry 
axis; the parameters a, b, and c determine the intensity of the wake and depend, according 
to [6], on the dimensions of the body forming the wake and the distance to it. 

2) Flow from a supersonic spherical source past a body. We shall assume that the 
center of the source lies on the symmetry axis at a distance Rd from the critical point. 
In a spherical coordinate system we obtain implicit relations between the quantities 
u~, v~, p~, 9~ [i0]. 

u~ = V 1cos ( ~ - -  ~), v~ = - - V  l s i n ( ~ -  T), 
1 

(%)2 A v-l, Al/(V-l) r VI= 9 ~ =  sin ~=%-, 

V~9 ,  
A = t + 0 . 5 ( ? - - t )  M ~ ( i - - V ~ ) ,  M ~ =  ~P* 

(1.5) 

(~R is the distance from the center of the source). The nonuniformity of the flow is deter- 
mined by the parameters d and M,, one of which can be replaced by giving the radius of the 
source. 

2. Numerical Solution of the Problem. For convenience in solving the problem numeri- 
cally we shall transform the starting system of equations and the boundary conditions of 
A. A. Dorodnitsyn's type: These variables permit resolving the singularities at the critical 
point: 
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=x, 0 2/' 1 [  or dz, A = . t  pr 
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u, Of 1 Op ~tpr e 
u ~  7 2  =- -~ '  P l =  ~ 0~ ' l =  a~i~g ~ . 

In  t h e  v a r i a b l e s  ( 2 . 1 )  t h e  i n i t i a l  and boundary  v a l u e  p rob lem ( 1 . 1 ) - ( 1 . 3 )  
following form (we omit the index 0): 

(2 . i )  

assumes the 

! 
= D u  + 2 +  2p-lv , = 

--1 t ~ t  la 0~)~ = DO -q- aauO - -  a , l  (u { )  2 - -  a ~ u p - * P , ,  
, , , 

(P1):=~2uu~+~au ~, D ~ u o o 4 - - ( u o ~ u f ~ - + % f  , p=O.5v~pO; 

= 0 :  u = ] = O ,  0 = % ;  

= ~: z r  + u = ~, l~-~.o'~ + o = ~ + o . 5 ~ ( ~  - ~)"-, 
t 

S 0 /  + Uoo/~ = ~)--1,, P = t + e ~ a~ 
2 9~v~176 q) rpo~voo ' 

s OG ~ Poovoo Ovoo] Uoo 

( 2 . 2 )  

( 2 . 3 )  

(2.4) 

The coefficients %-% amd g1-$a of the system (2.2)-(2.4) are functions of the longi- 
tudiflal coordinate g and depend as follows on the geometry o~ the body and the parameters 
ol the incident flow: 

OVa f Oq) 
% = ~ cos (~ - -  ,:p) q- (• + • V1 sin (~x --  ~p), • = -b~-~ ' 

o~ o=c~ l@uo~ Olnk 2s r o~ + a2Vl' 0:2 (l+~)%V 1' al = -~(' 

Ov oo 
a a = 2 ~ c t g ( a - q ~ ) ,  % = 2 c t g  ~ ( a - q : , ) ,  ~ = ~ z , , % ,  

L = 0.5 (1 + ~) • cos 2 (~2-- ~), G = 2~,~ -*,  ~ 

O v  OK 1 
@ =Vi(• @• c o s ( ~ - ~ ) - ~ - ~  sin(~--~), 

t o[3~ 
o~' 

a~ = ~-1 cos (~x-- qO- 

(2.5) 
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For the case 1 the substitution ~ : • : 0 must be made in the formulas (2.5), and in the 
case 2 the value of ~ is determined from (1.5). 

Analysis of (2.2)-(2.5) shows that for the chosen scaling the effect of the nonuniform- 
ity of the flow on the characteristics of the flow near the critical point in the case 1 
is determined solely by one parameter A : 2ab(i + c)/(i--a) , which appears only in the bound- 
ary condition for the gradient of the pressure on the shock wave. For the case 2 this ef- 
fect, generally speaking, is determined by the two parameters d and M,, but for sufficiently 
high supersonic velocities of the flow around the body the effect of M, can be neglected, so 
that the only remaining parameter characterizing the degree of nonuniformity of the flow is 
d. The parameter d appears both in the boundary conditions on the shock wave and in the 
coefficients of the equations themselves. 

The system (2.2)-(2.4) was solved numerically based on an implicit (in the coordinate 
~) finite-difference scheme with accuracy O(A~)4 ~-~O(A~) 2 ; this" scheme consists of the 
scheme employed in [ii], where the method of [12], which combines second-order accuracy 
with good stabilizing properties, was employed to approximate the derivatives with respect 
to $. Flow around hyperboloids of revolution with the following parameters of the problem 
were studied: ~ =0.I, ~ =  0~71, ~ =  0.5, c =  3, M, = 10, die__i, i O ~ R e ~ 5 - t O  5, 0 . 0 3 ~ 0  w = const 

~ 0 . 5 , 1 0 ~  ~ 0.01~b~20,0~A~A, = 4/3. 

3. Discussion of Computational Results. Case i. Analysis shows that for the case of 
flow on the side surface the effect of nonuniformity on the flow depends on, in addition to 
the parameter A, the characteristic radius of the wake r, ~b-~/2 . The form of this effect 
is largely determined by the relative valuer of A, r,, and Re. 

In particular, for fixed A, large b (small r,), and any values of Re the effect of the 
degree of nonuniformity is localized primarily in a neighborhood of the blunt end, so that for 

>> 1 the velocity and temperature profiles are virtually identical to those for uniform 
flow around the body. At the same time for sufficiently large r, this effect is largely 
determined by Re. This result is illustrated well in Fig. i, which shows the profiles of u 
across the shock layer with 0w = 0.25, ~ : 45 ~ Re : 10, ~ : 50; 25; 5; 0 (lines 2-5) and Re = 105 , 
: 5 (line i) for auniform flow (A= 0) (solid lines) and A = 2/3, b = 1 (dashed lines). One 

can see that for sufficiently large values of Re the difference in the profiles can already 
be neglected for ~ ~ 5, but for Re z I0 the effect of nonuniformity remains significant also 
for $ Z 50. 

The dependence of the distribution of the heat flux cq = (~OT/az)/(e~/R--e) along the sur- 
face on the parameters A and b is shown in Fig. 2, where the values of cq*: cq(~, A)/Q(0, 0) are 
given for Re = 10, O~ = 0.25 (solid lines), Re = 105, 0w = 0.25 (dashed lines), and ~e : 105 , 
0 w = 0.03 (dot-dashed lines) with A : 0; A : 2/3, b :I,5; A = 2/3, b : 1.2 -the lines 1-3. On 
the whole the calculations have shown that the behavior of c~ depends strongly on the intens- 
ity of the wake, the radius, and the longitudinal coordinate $. Near the bluntend at ~ = 
0(i) an increase in A results in a decrease in the absolute values of the heat flux. For 
small radii of the wake the maximum of Cq can be shifted from the critical point, and its 
location correlates quite well with the boundary of the wake. On the side surface for suf- 
ficienty large ~ an increase in the degree of nonuniformity, conversely~ results in an in- 
crease in the absolute values of Cq as compared with the case of uniform flow around the 
body, and in addition for large b this excess is in practice insignificant, whereas for 
b ~ 1 it is quite significant. It should also be noted that as the degree of nonuniformity 

in- increases the effect of the temperature of the surface and Re on the distribution of C~q 

creases. 

It is shown in [i, 5, 6] that because of the existence of a positive gradient of the 
total pressure in the incident flow a zone of return-circulation flow can appear in the shock 
layer near the critical point. In [6, 8] the condition is proposed as a criterion for the 
appearance of such a zone at $ = 0 for Re § =. 

o ~ w / o $  2 = o. ( 3 . 1 ) -  

Using the asymptotic approach of Hayes--Busemann [13] to determine Pw we find that there 
is no flow detachment at the critical point if 

A ~ A ,  = 4/3. ( 3 . 2 )  
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For a number of bodies, for example, spheres, the condition (3.2) remains valid also for flow 

outside the neighborhood afthe critical point. At the same time there exist entire classes 

of bodies for which the condition A < A, is not a sufficient condition of undetached flow 

around the body, since for such bodies the pressure gradient at the surface can become posi- 

tive not at the critical point but rather for $ ~ 0. This is connected with the fact that 
Opw/a$ depends both on the gradient of the total pressure in the incident flow and on z - 
the curvature of the shock wave. In a neighborhood of the critical point for blunt bodies 

~= O(1), as a result of which the effect of the second factor on the distribution of@m/O~ 
is significant and detachment of the flow does not occur. For ~ >> i, however, 
for some bodies, for example, for hyperboloids, u-+0, �9 so that the effect of 
the gradient of the total pressure, which, as already noted above, is positive 
for the wake, can be determining. Thus it may be concluded that the appearance 

of detachment of flow on the side surface of the body is determined by the ratio of the 

orders with which the longitudinal curvature of the surface of the body and the positive 
gradient of the total pressure in the incident flow approach zero. In particular, for fixed 
A and small radii of the wake (large b) the degree of nonuniformity of the flow approaches 

zero more rapidly and Pw($) is a monotonically decreasing function under these conditions. 
As r, increases, however, the situation changes - the distribution Pw(~) ceases to be 
monotonic and a characteristic "spoon" of pressure arises on the side surface. This can be 
seen clearly in Fig. 3, which shows the dependences P~ = pw(~)/pw(O) for ~ = 45 ~ , Re = i0 
(solid lines), Re = l0 s (dashed lines) with A = 0 (line 5), A = 2/3, b = i; ii.2; 1.5; 5 
(lines i-4). On the whole the pressure along the surface is virtually independent of Re, but 
for regimes in which a region with a positive pressure gradient arises on the surface of the 
body an increase in Re can cause detachment of the flow. Based on this we conclude that 
as Re + ~ the equation 

OPw/O ~ < 0 (3 .3 )  

for all points on the side surface is a sufficient condition for undetached flow around the 

body. As comparisons with numerical calculation show (crosses in Fig. 3} the quantity Pw 
can be calculated with good accuracy from the formula obtained by analogy to Busemann's for- 
mula: 

r w 

Pw = ---i f--  9~V~ s i n  ~ ~z - -  rp~V~ c o s  2 ~z dr . 
0 

(3..4) 

Case 2. FiEure 4 gives an idea of the character of the effect of the distance d from 
the source on the structure of the flow in the shock layer. The figure shows the profiles of. 
u across the layer with $ = 45 ~ , e w = 0.25 for a uniform flow (dashed lines), d = I0 (dot- 
dashed lines), and d = 3 (solid lines) with Re = i0 (lines 2 and 4), Re = 103 (lines 1 and 
3), and ~ = 0 and 25 (lines 3, 4, and i, 2). One can see that as for the case 1 the effect of 
nonuniformity is a function not only on d but also Re ahd the longitudinal coordinate. For 
low values of Re the corresponding profiles e9 u in a neighborhood of the critical point are 
close to one another, but on the side surface the difference can ~reach 40-50%. At the same 
time for Re >> 1 the difference remains comparatively small for any value of $, though unlike 
the case of uniform flow around the body with sufficiently small values of d and $ Z i0 char- 
acteristic local maxima near the surface of the body appear in the profiles of u and e. 
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On ~he whole the effect of nonuniformity on the flow in the case of a body in a flow 
from a supersonic source is of a qualitatively different character than in the case of a 
body in a flow of the waste type. In particular, in this case the "spoon" of pressure does 
not appear in the distribution Pw, and Pw(g) is always a monotonically decreasing function, 
while detachment of the flow can occur only for small values of d, owing to the appearance 
of a point with zero pressure on the surface of the body. 

In conclusion we sha~l discuss the question of the dependence of the parameter d of 
the distributions of the heat flow Cq along the surface. Calculations showed that in a 
neighborhood of the critical lines, decreasing d decreases the thickness of the shock layer 
and increases Cq. For not very small values of d it is possible to find an approximation 
formula that enables calculation of the value of Cq base& on the corresponding val~e of Cq ~ 
for a body in a uniform flow: 

(4 = 1 / t +  4 (oo  R 0), (3.5) 

Here cq~ Re ~ is the heat flux into the critical point of this body placed in a uniform 
flow of gas with Re ~ = dRe/(l + d). 

Comparison with the results of numerical calculations for a cooled surface (8 w < 0.2 ) 
shows that the accuracy of the formula (3.5) with d ~ 1 is of the order of 5% in the entire 
range of Reynold's numbers. As the distance from the critical point increases the character 
of the dependence of Cq on d changes. Figure 5, where the distributions Cq refer to the 
corresponding values for a body in a uniform flow at the critical point wis Re = 105 , ~ = 
45 ~ , d = 10s; 102; 25; i0; 3 (lines 1-5) for 6 w = 0.25 (solid lines) and 6 w = 0.03 (dashed 
lines), are presented, shows that unlike near the critical point a decrease in d for suf- 
ficiently large values of ~ results in a decrease in the absolute values of the heat flux. 
It is important to note that this must be taken into account in the calculation of flow 
around elongated bodies, even if the small degree of nonuniformity is quite small (d is large). 
For example, for d = i00 for ~ 5 ~ 5 the value of Cq differs from the value for a uniform flow 
by not more than 0.5%, whereas for ~ = 50 this ~ifference already equals 35%. 
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FLOW IN A CHANNEL WITH SUCTION ON ONE SIDE: DETACHMENT FROM AN 

IMPERMEABLE WALL AND EFFECT OF ROTATION AROUND THE TRANSVERSE AXIS 

S. A. Vasil'ev and E. M. Smirnov UDC 532.516 

i. Plane Flow: Review of Formulations and Results. We shall study the plane flow of 
a viscous incompressible liquid ~ong a channel formed by two parallel walls, under condi- 
tions such that one is impermeable and liquid is suctioned uniformly through the other wall. 
We ~enote the distance between the walls by H. We shallassume that the flow occurs in the 
y0z plane; we place the origin of the Cartesian coordinate system in the inlet section on 
the impermeable wall and we orient the z-axis parallel to the walls in the direction of the 
flow. The equations of motion and continuity have the form 

aw aw t Op ( O~ a2w 
w ~ + v @ ,o az + v ~ az 2 + a " J '  g 

av , a~ t a p  ( c32v , a2e ) am Ov 
W aF T V Y j  = p a v  + v a~2 7 @2 , -dF + - ~  = O. 

( 1 . 1 )  

The solution of the equations must satisfy the boundary conditions 

y = O: w - -  v = O; y ~ H: iv = O, v = v~ ( 1 . 2 )  

(v s > 0 is the suction velocity). 

In [i, 2] it is shown that the system (I.i) can have a self-similar solution of the 
form 

w = (Wm -- Gz/H)/'(~), v = ~/(~). (1.3) 

Here W m is the mean flow at the inlet; N = y/H. For the problem at hand the function f(N) 
satisfies the equation 

f , , +  R~ ( / ' ~ -  H ~) = k ( 1 . 4 )  

and the boundary conditions 

l (o)  = f ( o )  = o, 1(~) = t ,  f ' ( i )  = o. (1.5) 

One of the boundary conditions is used to find the constant k which determines the 
longitudinal pressure gradient. The parameter of the self-similar solution is Reynolds num- 
ber R~ = vsH/v, contructed based on the suction velocity. In [3] the problem (1.4) and 
(1.5) is solved analytically by the method of expansion in a series in powers of R s and the 
solution is valid for small values of this parameter. We do not know of any other solutions 
of the self-similar problem. 

The solutions of the two-dimensional problem (i.i) and (1.2) were found by the finite- 
difference method in [4]. The purpose of the calculations was to study the flow field in a 
flat heat pipe. The downstream end of the pipe was assumed to be closed. The conditions at 
the inlet into the suctioned section (condenser section) were not fixed; they were determined 
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